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ABSTRACT 

 

Today, embedded real-time applications play an important role in modern life. Satellites are 

also robust embedded real-time applications. A satellite project can cost over three-hundred 

million dollars. As many satellite manufacturers validate their satellites before launching, 

satellite simulators play the most valuable role in validation infrastructures. Specifically, 

satellite flight software validation has become more important. In this paper, we focused on the 

round robin (RR), rate monotonic (RM), and event driven (ED) real-time scheduling task 

methods with respect to their CPU usage performance for satellite simulator infrastructures. 

The tasks are evaluated and tested by real-time executive for multiprocessor systems (RTEMS). 

Those scheduling tasks are used in polling mode in the simulation setup. In this study, we 

compared three task scheduler methods for attitude orbit control system tasks and MIL-STD 

1553 bus data distribution controller tasks in a spacecraft simulator environment. The results 

were close and the values were not segregated, thus, we chose RR and ED, because RR was 

easy to implement and ED allowed for full control of the tasks. 
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1. INTRODUCTION 
 
Spacecraft development has been remarkably changed and optimized by modern simulation 

methods. Spacecraft manufacturers need to be sure the spacecraft can achieve its mission. 

Satellite simulators play the most valuable role in validation infrastructures. Hence, satellite 

simulation is an important issue in space craft simulations, such as how well you can simulate 

your system, based on models and the controller. Simulation frameworks are provided to run 

models. The satellite equipment, space environment, and satellite dynamics have to be 

represented by the models. The aims of a consummate simulation contain the representative 

models that are given at below: 

 

• Satellite equipment models 

• Space environment model 

• Satellite dynamic model 

 

The general purpose of running satellite models in a simulation framework is spacecraft flight 

software validation.  
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Spacecraft software is run on real-time embedded system called an onboard computer (OBC). All 

control algorithms are run from there and it handles data management via a uniprocessor. The 

spacecraft controller is run on a real-time operating system (RTOS) on the OBC. The RTOS was 

provided with a task scheduler method to use our flight software. Task optimization and 

performance is directly related to the flight software performance. Therefore, the aim of this study 

was to compare the real-time task scheduler method in a spacecraft simulation. 

 

In our study, we focused on two controllers, the 1553 bus data distribution controller (1553) and 

attitude orbit control system (AOCS), and the three task scheduler methods chosen for 

comparison were: 

 

• Round Robin (RR) 

• Rate Monotonic (RM) 

• Event Driven (ED) 

 

Tasks for the 1553 and AOCS were run for the three scheduler methods. 

 

2. THE SPACECRAFT SIMULATION 
 
Space mission projects are unique and require a big budget, thus, it must be validated for a 

successfully mission life before launching. Simulation is the most used process method to 

validate equipment and verify the satellite system’s level of requirement. Validation 

infrastructures vary according to their purpose. 

 

2.1. Functional Verification Bench (FVB) 

 
For most spacecraft projects, this is used for limited algorithm verification of the AOCS. The 

OBC is not represented in this model; only the control algorithms are designed and its 

functionality is tested (Figure 1) [1] 

 

 

Figure 1 Functional Verification Bench 

 

2.2. Software Verification Facility (SVF) 

 
This facility is used for verification of the interfaces, connections, and standards to be sure that 

they work with each other properly. The OBC could be a model or emulator. The emulator is a 

perfect replica the OBC (Figure 2). [1] 
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Figure 2 Software Verification Facility 

 

 2.3. Hybrid Verification Infrastructure 
 
The hybrid verification infrastructure generally meets the real hardware OBC for verification of 

the satellite software on the real hardware. This infrastructure has the advantage of a directly 

tested I/O interface (Figure 3). [1] 

 

Figure 3 Hybrid Verification Infrastructure 

 

2.4. Avionic Test Bench (ATB) 
 
The ATB is the most improved simulation for the satellite. Verification engineers carry out their 

design. This bench can be added not only the equipment model, but also the real equipment that is 

needed to project the constraints (Figure 4). [1] 

 
Figure 4 Avionic Test Bench (ATB) 

 

2.5. Dynamic Satellite Simulator (DSS) 

This simulator is generally used for telemetry and tele-command verification. Satellite operators 

are always educated about the DSSs, as it is very important in the launch and early orbit phase 
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(LEOP), because it aids in satellite survival. When the LEOP is not pre-worked, it causes satellite 

loss. The DSS provides pre-work before the LEOP, lunching, or nominal operations (Figure 5). 

[1] 

 

Figure 5 Dynamic Satellite Simulator (DSS) 

 

3. RTEMS (REAL-TIME EXECUTIVE FOR MULTIPROCESSOR SYSTEMS) 

 
RTOSs run in the OBC a part of the flight software. Hard RTOSs provide a restricted time in case 

the safety critical systems use hard RTOSs. Satellites are safety-critical systems and any 

unexpected delays may cause a catastrophic output, which can result in satellite loss. 

 

RTEMSs are the most useful hard RTOSs on satellites. They provide high-performance 

peripherals for embedded real-time systems, offering characteristics to support the development 

of real-time embedded applications that are available for different platforms and architectures, 

including SPARC leon3 FT, which is one of the architectures used in this study [6] 

RTEMSs provide the following features: 

 

• multitasking  

 

• homogeneous multiprocessor systems  

 

• heterogeneous multiprocessor systems 

 

• interrupt management 

 

• event-driven inter-task communication, priority-based, pre-emptive  

 

• rate monotonic scheduling 

 

• synchronization  and inter-task communication 

 

• high level of user configurability 

 

• dynamic memory allocation 

 

• priority inheritance 

 

The internal architecture of RTEMSs can be observed as layered components that work in 

harmony to provide a set of services for a real-time application system. (Figure 6) [6] 
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Figure 6 RTEMS resource managers 

 
The functions utilized by multiple managers, such as scheduling, dispatching, and object 

management, are provided in the executive core. In this study, we focused on task manager 

services, rate monotonic services, and event services. [6]  

 

4. STUDY ENVIRONMENT 
 
An important issue in space craft simulations is how much simulations are in your system, based 

on models and the controller. The system must be close-looped and the controllers must be feel 

the same as in orbit. Hence, we developed the test environment of a hardware OBC, simulation 

framework, and MIL-STD 1553 data bus to meet the requirements of a spacecraft (Figure 7)  

 

 
 

Figure 7 Test Environment 

 

4.1. On Board Computer (OBC) 

 
The OBC is the flight computer of a satellite. All of the control algorithms are run from there, and 

it handles data management via a uniprocessor [3] SPARC leon3 FT, which is especially designed 

for space missions. [4] 

 

The LEON3 is a VHDL model of a 32-bit processor that is synthesizable and can accommodate 

IEEE-1754 (SPARC V8) architecture. LEON3 is an addendum of the LEON2 processor, with a 

7-stage pipeline (compared to LEON2’s 5-stage pipeline), which supports asymmetric and 

symmetric multiprocessing (AMP/SMP). A multiprocessing configuration of as much as 16 CPU 

can be utilized. The LEON3 is a highly-configurable model, which is appropriate for system-on-

chip (SoC) designs, featuring the following: [5] 
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• A SPARC V8 instruction set equipped with V8e extensions, 

 

• A sophisticated 7-stage pipeline 

 

• Advanced on-chip debugging support, equipped with instructions and a data trace buffer 

 

• A local instruction and data scratch pad RAM of 1 to 512 kilobytes 

 

• Robust and fully-synchronous single-edged clock design, high-performance: 1.4 

DMIPS/MHz, 1.8 CoreMark/MHz (gcc –4.1.2), 

 

• A wide range of software tools, such as compilers, kernels, simulators, and debugging 

monitors. 

 

• An AMBA-2.0 AHB bus interface 

 

• Up to 125 MHz in FPGA and 400 MHz on 0.13 um ASIC technology 

 

In the test setup, the OBC featured the following:  

 

• LEON-3 FT core 

 

• RTEMS operating system (OS) 

 

• MIL-STD-1553, CAN, Ethernet 

 

• Control Algorithm Integration: 

 

� AOCS Algorithm 

 

� Data Management 

 

� Sensor Data Analysis 

 

� Actuator Control 

 

� Mode management 

 

4.2. MIL-STD 1553 Bus 

 

The Mil-Std-1553B or Milbus has the standard defining characteristics of a serial multiplex data 

bus. The standard is a set of requirements covering the mechanical, electrical, and functional 

aspects of the bus. The bus aims at interconnecting via a single-medium avionics subsystem. [6] 

 

MIL-STD-1553 includes three kinds of bus users, known as terminals, including a bus controller 

(BC), remote terminal (RT), and bus monitor (BM). The bus transaction is a command/response. 

The BC behaves like a master and begins all of the transactions. The RTs, controlled by the BC, 

supply the interface between the 1553 bus and the appropriate unit/sub-system. The BM remains 

passive and is a bus traffic recorder. [6] 
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Figure 8 MIL-STD 1553B bus 

 

4.3. Simulation Framework 
 

The simulation framework provides the equipment and environment models in the polling 

mechanism. It also features the full scope of the problems to be investigated, ranging from the 

design and to the overall system simulations for the analyses of the dynamic system operation [1]. 

In our study, the simulation framework was run at ten Hz. The aims of the consummate 

simulations as contained representative models are given below: 

 

• Star tracker model 

 

• Sun sensor model 

 

• Magnetometer model 

 

• GPS model 

 

• Magnetic toque bar model 

 

• Reaction wheels’ model 

 

• Propulsion model 

 

• Communication subsystem model 

 

• Power subsystem model 

 

• Space environment model 

 

• Satellite dynamic model 

 

5. TASK SCHEDULERS 
 
Space craft flight software must include both robustness as well as hard real-time. Moreover, the 

OS should manage to tasks properly. In space craft flight software, many tasks are used separately 

in the control flight. The flight software’s performance is related to the overall performance of the 

tasks; therefore, the task scheduler should operate at optimum performance for the flight 

controller. We implemented three different task scheduler models; round robin (RR), rate 

monotonic (RM), and event driven (ED). Static priority-driven pre-emptive [3] approaches [7] 

were also employed in our study. 

 

In our study, all of the tasks were identified as the highest priority. RTEMS OS layers (Figure 9) 

is showed in the Figure 9. The AOCS and 1553 bus controllers were appointed as the test tasks 
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that would be used to compare the CPU performances. We focused on two controllers: the 1553 

bus data distribution controller (1553) and AOCS, as well as three task scheduler methods chosen 

for comparison, which were RR, RM, and ED. 

 

 

Figure 9 RTOS layer 

 

5.1. Round Robin 
 
RR scheduling is a task scheduling algorithm that is designed to be equitable. It uses time slices, 

also known as time quanta, which are assigned to each task in the queue. Each task is allowed to 

use the CPU for a given amount of time, and if it does not finish within the allocated time, it is 

pre-empted, and then returned to the back of the queue, so the next process in the queue can use 

the CPU for the same allocated time. [8] 

 

5.2. Rate monotonic 
 

The RM manager supplies facilities for implementing tasks that take place in a periodical manner. 

It also collects data regarding the implementation of those periods and is able to contribute 

relevant statistics that can be used when analysing and tuning the application. [2] [8] 

 

5.3. Event driven 
 
 

 

The ED is associated with interruptions and event managers that provide a high-performance 

method of inter-task communication and synchronization. The first task is invoked by 

interruptions from external devices, and after that, other tasks are invoked by previous tasks. 

Overload windows are able to miss deadlines; therefore, task times must be pre-calculated and 

those times must fit into a specific window; otherwise, the deadlines will exceeded [9]. 

 

6. DISCUSSION 

 
Herein, we implemented three task schedulers, the RR, RM, and ED. The working frequency was 

appointed as ten Hz (100 ms). The AOCS and 1553 bus controller were appointed as the test tasks 

that would have their CPU performances compared. During the tests, every scheduler was run 

1000 times and the tasks were identified as the highest priority [7]. The metric of performance 

was established as the “RTEMS CPU usage service” [8] for comparing the task performances. 

The results are given in the Table. 
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Table 1 CPU Usage (%) 

 

   

RR% 

 

RM% 

 

ED% 

Idle 83.989 82.195 83.342 

AOCS 15.727 17.495 16.234 

1553 0.001 0.001 0.108 

 

7. CONCLUSION 
 
In this paper, we compared three task scheduler methods in a spacecraft simulator environment. 

The result were close and the values were not segregated. In this case, the task scheduler methods 

were investigated and we learned which task was suitable for the study environment and study 

cases. For example, RR was based on time slicing, so, if RR was chosen, the case should use 

preemptive, numerous tasks at a short rate. RM [2] always follows the rule of the shorter a task's 

run period, the higher its priority, or the longer a task’s run period, the same is its priority [4]. 

Hence, the task period of the AOCS was longer than task period of the 1553 with the same 

priority, so the AOCS was run first. ED provides full control of the task run. If it is chosen, the 

task designer decides which is first, which is next, and which is last. Hence, we decided to run the 

1553 task first and run the AOCS after that. In this study, we chose RR and ED because RR was 

easy to implement and ED provided full control of the tasks. Future work, we will add one more 

task, known as the thermal task and we will compare stack (memory) size of tasks. 

 

REFERENCES 

 
[1] J. Eickhoff, “Simulation Tools for System Analysis and Verification” in Simulating Spacecraft 

Systems, 1st ed., New York, 2009. 

 

[2] C. Liu and J. Layland, “Scheduling algorithms for Multiprogramming in a Hard Real-Time 

Environment”, Journal of the ACM, 20(1), 1973, pp. 46–61.  

 

[3] F.F. Lindh, T. Otnes, and J. Wennerstrom, “Scheduling algorithms for real-time systems”, Sch. 

Comput. Queen’s Univ. Tech., 2005. 

 

[4] M. Bashiri S. Ghassem “Performability Comparison of Schedulability Conditions in Real-Time 

Embedded Systems”, 2010 Third International Conference on Dependability, 2010, pp 70–75. 

 

[5] http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard_Computer_and_ 

Data_Handling/Microprocessors. 

 

[6] https://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard_Computer_and_ 

Data_Handling/Mil-STD-1553. 

 

[7] K. Ramamritham, J.A. Stankovic “Scheduling Algorithms and Operating Systems Support for Real-

Time Systems”, IEEE Xplore, 1994. 

 

[8] RTEMS C User’s Guide (https://docs.rtems.org/releases/rtems-docs-4.11.2/c-user/index.html). 

 

[9] M. Coutinho, J. Rufino, and C. Almeida. “Control of event handling timeliness in RTEMS”. In: 

Proceedings of the 17th IASTED International Conference on Parallel and Distributed Computing 

Systems - PDCS 2005, Phoenix, Arizona, USA, 2005. IASTED. 

 

 

 



84 Computer Science & Information Technology (CS & IT) 

 

AUTHORS 

 
Mehmet Emin Güllüoğlu is Spacecraft Flight Software System Engineer at 

Turkish Aerospace Industries (TAI) where he has been since 2007.From 2007 to 

2013 he worked at TAI as an Avionic system engineer. From January 2013 to 

January 2014 he worked at Thales Alenia Space – Cannes, France as an AIVV 

engineer. From January 2014 to October 2014 he worked at Thales Alenia Space 

– Cannes, France as a Functional Chain Validation engineer. From October 2014 

to today he worked at TAI eventually as a Flight software engineer. His research 

interests is RTOS task schedulers, Spacecraft simulations and Software 

integration. 


